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In [3] Bailey and Richard Crandall established normality base b for the class of con-
stants

αb,c =
∞∑

k=1

1

ckbck , (1)

where the integer b > 1 and c is odd and co-prime to b, as well as some generalizations of
this class. The proof given in [3] is rather difficult and relies on several not-well-known
results, including one by Korobov on the properties of certain pseudo-random sequences.
Recently it has been shown that normality can be established much more easily, as a
consequence of what may be called the “hot spot” theorem [1]. Here we state and prove
a strong form of the “hot spot” theorem. A weaker result is given in [5, pg. 77], and is
proven by an ergodic theory argument in [2].

In the following, {·} denotes fractional part as before, and #[·] denotes count. µ and
ν denote probability measures on U (the unit interval mod 1). A − B denotes the set of
x ∈ A and x /∈ B, and A∆B = (A − B) ∪ (B − A). The notation a.e. x[µ] means for all
x ∈ U except for a set Q with µ(Q) = 0. A Vitali covering of a measurable set A ⊂ U is
a collection of open intervals with the property that every x ∈ A is contained in infinitely
many, arbitrarily small intervals in the collection. The measure ν is absolutely continuous
with respect to µ if ν(A) = 0 whenever µ(A) = 0. The map T : U → U is said to be
measure-preserving with respect to µ if µ(T−1A) = µ(A) for every µ-measurable set A,
and ergodic with respect to µ if T−1A = A implies µ(A) = 0 or 1.

Given a real constant α in [0, 1), we define here a base-b hot spot to be some x ∈ [0, 1)
with the property that

lim inf
h→0

lim inf
n→∞

#0≤j<n[{bjα} ∈ (x − h, x + h)]

2hn
= ∞. (2)

Another way to state this condition is this: x is a base-b hot spot if given any M > 0,
there is some δM > 0 such that for all h < δM there is some Nh > 0 such that for all
n > Nh, the condition #0≤j<n[{bjα} ∈ (x − h, x + h)] > 2hnM holds.

What we shall establish below is that α is b-normal if and only if it has no base-b hot
spots. We first present a few preliminary results.

Lemma 1 Vitali covering lemma. If a µ-measurable set A ⊂ U has a Vitali covering,
then given any ε > 0, there is some finite disjoint subcollection A′ with the property that
µ(A∆A′) < ε.

This result is proven in [6].
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Lemma 2 Birkoff ergodic theorem. Let f(t) be an integrable function on [0, 1), and
let T be an ergodic transformation for µ. Then

lim
n→∞

1

n

n−1∑
k=0

f(T kx) =
∫

f dµ for a.e. x[µ], (3)

This result is proved in [4, pg. 13, 20-29].

Lemma 3 Equivalence of absolutely continuous measures. Suppose that T is
measure-preserving and ergodic with respect to both µ and ν, and further that ν is ab-
solutely continuous with respect to µ. Then µ = ν.

Proof. Applying the ergodic theorem to f(t) = IA(t) (the indicator function of A),

lim
n→∞

1

n

n−1∑
k=0

f(T kx) =
∫

f(t) dµ(t) = µ(A) for a.e. x[µ]. (4)

Since ν is absolutely continuous with respect to µ, the above holds a.e. x[ν] as well. Now
since T preserves the measure ν, we can write, for n > 0,

ν(A) =
∫

f(t) dν(t) =
1

n

n−1∑
i=0

∫
f(T ix) dν(x)

=
∫ 1

n

n−1∑
i=0

f(T ix) dν(x) →
∫

µ(A)dν = µ(A), (5)

by the dominated convergence theorem. QED

Lemma 4 Absolute continuity of measures with finite derivatives. Suppose ν is
a measure on U with the property that for a.e. x[ν],

lim inf
h→0

ν(x − h, x + h)

2h
< ∞ (6)

Then ν is absolutely continuous with Lebesgue measure.

Proof. Here µ denotes Lebesgue measure on U , and ν denotes any measure as defined in
the hypothesis. Let A be any set with µ(A) = 0, and let ε > 0 be given. Then there exists
a set Q with ν(Q) < ε and M ≥ 1 such that the LHS of (6), as a function of x, is bounded
by M except on Q. Further, there exists some open set A′ ⊃ A with µ(A′) < ε/M . Then
for every x ∈ (A′ − Q) there exists an infinite sequence hk, strictly decreasing to zero,
such that (x − h1, x + h1) ⊂ A′ and ν(x − hk, x + hk)/(2hk) ≤ M + ε for k ≥ 1. For
x ∈ (A′ ∩ Q), define hk = 2−m−k, where m is large enough that (x − h1, x + h1) ⊂ A′.
Note that in either case all of these intervals are contained within A′. The collection of
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these intervals is a Vitali covering of the set A′, so by the Vitali covering lemma there is
a finite disjoint subcollection A′′ ⊂ A′ with ν(A′ − A′′) < ε. We can then write

ν(A) ≤ ν(A′) = ν(A′′) + ν(A′ − A′′)

= ν(A′′ − Q) + ν(A′′ ∩ Q) + ν(A′ − A′′)

≤ (M + ε)µ(A′′ − Q) + 2ε ≤ (M + ε)µ(A′) + 2ε

≤ (M + ε)ε/M + 2ε < 4ε, (7)

which implies that ν(A) = 0. QED
In the following, µ will denote Lebesgue measure on U , and, given a real constant

α ∈ U and an integer b ≥ 2, ν will denote the measure defined on an interval (c, d) as

ν(c, d) = lim inf
n→∞

#0≤j<n[{bjα} ∈ (c, d)]

n
(8)

Lemma 5 Ergodicity of the digit-shift transformation. The digit-shift transfor-
mation T (x) = {bx} is measure-preserving and ergodic with respect to both µ and ν.

Proof. T clearly preserves Lebesgue measure. Assume for convenience that b = 2, and
suppose that A = T−1(A). Then note that x ∈ A if and only if {x + 1/2} ∈ A. Thus if
D = (0, 1/2), then µ(A ∩ D) = µ(A)/2 = µ(A)µ(D). A similar equality follows for any
binary rational interval (j2m, k2m), and thus for any finite disjoint union of such intervals.
This collection of binary rational intervals is a Vitali covering of A. Thus given ε > 0,
there is some finite disjoint union E with µ(A∆E) < ε and µ(A ∩ E) = µ(A)µ(E). We
can then write

|µ(A) − µ2(A)| < |µ(A) − µ(A)µ(E)| + ε = |µ(A) − µ(A ∩ E)| + ε

= |µ(A) − (µ(A) − µ(A − E))| + ε ≤ 2ε (9)

Thus µ(A) = µ2(A), so that µ(A) = 0 or 1 as required. A similar argument applies to the
measure ν as defined above. In the parlance of ergodic theory, T is “mixing” with respect
to both µ and ν, which condition is well-known to imply ergodicity [4, pg. 12]. QED

Theorem 1 Hot spot theorem. The real constant α is b-normal if and only if it has
no base-b hot spots.

Proof. If α has no base-b hot spots, then it follows immediately from Lemmas 3, 4, and
5, that for any interval (c, d) ⊂ U ,

lim inf
n→∞

#0≤j<n[{bjα} ∈ (c, d)]

n
= µ(c, d) = d − c (10)
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This result also applies to (0, c) ∪ (d, 1), which except for c, d and the point 0 is the
complement of (c, d). We can then write

lim sup
n→∞

#0≤j<n[{bjα} ∈ (c, d)]

n
= 1 − lim inf

n→∞
#0≤j<n[{bjα} ∈ (0, c) ∪ (d, 1)]

n
= 1 − (c + (1 − d)) = d − c (11)

Thus the lim inf and the lim sup are identical. Since this holds for any interval (c, d),
it holds in particular for any interval whose endpoints are of the form j/bm. Thus α is
b-normal. QED
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